Technical Data		
Technology & Principle	Automated continuous flow analyzer micro or	
	macroflow	
Operations	Multichannel in parallel, up to 12 channels	
	simultaneously	
Sampler RA104 or RA200		
Dimensions/ Weight & Power	60x45x40 cm (LxWxH); 15 Kg;	
	12/24 V DC power supply included	
Operations	Random Access type $ ho \ \phi \ \zeta$	
Number of positions		
Multiprobe operations	Yes up to 4 probes	
Autodilution module	Yes, optional	
Analytical module		
Dimensions & weight	60x22x46 (LxWxH), 15Kg	
Power	12 & 24 VDC, power supply included as standard	
Operations	PC controlled, locally by ntegrated colour touch screen	
Each analytical module includes:		
Peristaltic pump	n. 1 high precision peristaltic pump PC controlled, long pump tube life	
Dump tubos positions	12	
Pump tubes positions Multispeed		
Multispeed	Yes, 2 speeds, Fast for start/stop & reagent changeover, Standard for analysis	
Digital Colorimeter	changeover, standard for analysis	
Wavelenght range	340-1100nm	
Light source	LED emitters coupled with specific interferential filter	
Flow cell - standard	15 or 50mm, ID 1.0mm	
Flow cell - special design (options)	Guided Wave Flow Cell path length on demand	
	Fluorimetric flow cell	
Colorimeter adjust, baseline and gain	Fully controlled by PC	
Debbubbling	Hydraulic or electronic	
Matrix correction	Yes, optional	
Linearity & OD resolution	Standard: 1x10 ⁻⁴ , max linearity: 3.5 AU ;	
	Extended: 2.5x10 ⁻⁷ , max linearity: 6.0AU, 24 bit A/D	
	converter (optional)	
Alternative Detectors	Amperometric (integrated), Fluorimetric (integrated)	
	Flame (external detector	
Heating baths		
Heating or distillation bath	n. 2 heating baths, fully PC controlled	
UV digestor	g	
Coils & Lamps	Quartz coil, high energy UV lamp for TN, TP and	
	dedicated lamp for TCN	
Wash Reagent valves		
Number of valves & control	Max n. 6 Wash/Reagent valves, fully PC controlled	
	3 level password: operator, supervisor, manager	
	Up to 12 channel	
	Up to 9 standards for each channels	
Software	Calibration curve stored for each run	
SURWARE	Real time peaks and results	
	On Line Quality control (up to 5 levels)	
	Work list, peaks and results stored with each run	
	Auto wake up & Auto shutdown included as standard	
	Subject to change without notic	

Subject to change without notic SYSTEA SpA Administration/Production: Via Frattarotonda Vado Largo 2/A - 03012 ANAGNI (FR) Tel. (+39) 0775.776058 - Fax 0775.772204 e mail<u>: info@systea.it</u> Web site: <u>http://www.systea.it</u>

Document ID: FlowSys_08_E (20200304)_Draft

FLOWSYS III

CONTINUOUS FLOW ANALYZER FOR AUTOMATED CHEMISTRIES

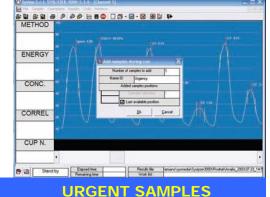
SYSLYZER 3000 - CFA software

894 8 50 P

Syslyzer 3000 software has been developed on CFA users suggestions, collected through many years of application engineers activities.

Systea in house software department programmed a 32 bit software for MS Windows XP /7/8.

EASY TO USE


All the functions and symbols are familiar to all the laboratory operators.

Set up a run is easy and quick: all work lists prepared for run can be changed at any time. Stored methods settings can define up to 9 standards and up to 5 controls. Calibration can be linear, polynomial, etc.. Corrections can be selected to re-calculate results compensating baseline or gain drift.

tot sampling protocol

ALC: N OTHER MANAGEMENT OF A

Bain ivodibut

Trease to parce

chart displays colorimeter graphic and the calibration function if already processed.

Start a run is simple and A complete work list including Urgent samples can be added friendly the operator can sample ID can be generated during a run. Just click on Add use a master work list and easily. In the worklist the Samples and digit the number of simply insert the samples operator defines the order of the samples to add. Results, to be analyzed. After batch to be analysed. Standard identified as QC are automatically starting analysis, the flow worklists can be stored and used stored in QC files, to be available the repeatedly when needed.

as controls chart.

-1	4 長田 第 - 12 - 12 - 12
181-00	Alexander Alexander and Alexander Alexander and Alexander an
104	
((min)	
593	
13-24 U/#11 1	
10110	
Kienar	
104	
10446	
574	
201	
where and	
Barlet	
196	
10448	

MAIN FEATURES

•3 level password: operator, supervisor, manager

- •Up to 12 channel
- •Up to 9 standards for each channels
- Automatic calibration
- •Calibration curve stored for each channel for each run
- •Reanalyze function for calibration, and/or samples
- Real time peaks and results
- •On Line Quality control (5 levels) and QC chart •Peaks and results stored for each run

Autowake up and autoshutdown

FLOWSYS III **CONTINUOUS FLOW ANALYZER**

FLOWSYS III is a microflow/macroflow automated CFA analyzer for water, soil, plants extracts and other industrial samples.

More than 800 applications are available on various matrix.

FLOWSYS III is a unique CFA analyzer combining higher performances and low running costs with a friendly user interface.

The segmented technique offers all the various possibilities of flow-analysis, what basically is a highly integrated, modular sample preparation and handling technique, with outstanding repeatability.

The 3rd Generation CFA Analyzer

The CFA technique carries out all steps of the analytical procedure in a reaction line of 1.0 or 2.0 mm inner diameter. These flow-conditions results in several advantages, for analytic process, design and easy operation. The reduction of flow-volume to 40% of the previous second CFA generation reduces the required dimensions for the pump. A high precision, multichannel pump separately for each determination provides maximum flexibility and easy maintenance.

The physical properties of flow line and segmentation provides high effective, continuous mixing and faster kinetics reaction.

FlowSys III provides easier and safer conditions for today's most interesting CFA applications, using inline distillation (cyanide, phenolindex) or UV-digestion (total-P, total-N).

	Features/Benefits			
•	Colour touch-screen			
•	Baseline and gain PC controlled			
•	HB temperature PC controlled			
•	Dual-speed pump PC controlled, for quick set-up or shut-down			
•	PC controlled Wash/Reagents valves			
•	Automatic colorimeter adjust on all filters			
•	Random access Automatic Sampler, 104 or 200 positions on single sampling probe, up to 4 probes operations option			
•	Auto diluter option			
•	Low reagent consumption & low cost for reagent disposal			
•	Special pump design/new manifold connectors			
•	Low maintenance cost			
•	Easier and friendly approach, no problems from bubble pattern, tubes connections etc.			
•	Easy & Fast method changeover			
•	Fast shutdown and Start up			
•	Independent analytical module			
•	Pump/s activated only for running channel/s			
•	Pump tubes saving			

IN LINE SAMPLE PRETREATMENTS

In line distillation for Cyanides (total & free), Phenols, Volatile acidity etc.

In line UV digestor for Total Phosphorous, Total Nitrogen etc., dedicated lamp for Total Cyanides

Dialyzers for high level or coloured samples

CYANIDE AMPEROMETRIC **ELIMINATES TOXIC REAGENTS**

Available Cyanide:

FlowSys measures available cyanide by a ligand-exchange, gas diffusion technique coupled with amperometric detector as per ASTM Method D6888-09 or OIA1677. This non-distillation technique provides accurate measurement of available cyanide in the presence of thiocyanate, sulfite and thiosulfate interferences. A sulfide removal acidification reagent is added in-line to samples containing this interference. Also can quickly and easily perform Free Cyanide measurements according to ASTM D7237 of ISO 14403

Total Cyanide:

FlowSys measures total cyanide by a UV digestion, gas diffusion technique coupled with amperometric detector as per with ASTM Method D7511-09e2. This non-distillation technique is particularly effective for applications where thiocyanate is present to avoid cyanide loss or positive interference. ASTM D7511-09e2 is USEPA-approved for analysis of wastewater samples for NPDES compliance reporting.

Samples distillation:

Additionally for difficult samples FlowSys can include an in line distillation that will remove all MOST interferences from the sample, the sample after distillation is treated in accordance to OIA1677, ASTM D6888-09 for Available Cyanide or ASTM D7511-09e2 for Total Cyanide

APPLICATIONS LIST

Surface, ground, drink	ing, waste and seawate	r.
ALDEHYDES	COD	PERMANGANATE INDEX
ALKALINITY	CYANIDE FREE & TOTAL	PHENOLS
ALUMINIUM	FLUORIDE	PHOSPHATE
AMMONIA	HARDNESS	SILICATE
CALCIUM	IRON	SULFATE
CHLORIDES	MANGANESE	SULFIDE
CHLORINE	NITRATE+NITRITE	TOTAL NITROGEN
CHROMIUM 6 ⁺	NITRITE	TOTAL PHOSPHOROUS
Wine/Beer/Etc.	Soils, plants, feeds and	l fertilizers
ACETIC ACID	AMMONIA	TOTAL PHOSPHOROUS*
ALFA AMMINIC NITROGEN	CALCIUYM	NOTE
AMMONIA	CHLORIDE	
BETA-GLUCAN	MAGNESIUM	Applications list includes almost
ANTHOCYANS (WINE)	NITRATE+NITRITE	800 methods this list shows
ANTHOCYANOGEN (BEER)	NITRITE	only the most common methods
PROTEIN/TOTAL N	PHOSPHATE	For any method not included in
REDUCING SUGARS	POTASSIUM (FLAME)	the list please contact our
SO2 FREE	SODIUM (FLAME)	application laboratory to check
SO2 TOTAL	SILICATES	method availability.
TOTAL POLYPHENOLS	SULFATE	Methods list is under
 Require external sample pre treatment 	TOTAL NITROGEN (TKN)*	continuous development

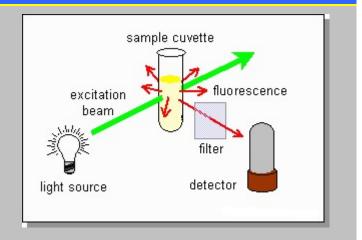
METHODS COMPLIANCE:

Flame option

Allow to connect an external flame photometer to measure Sodium & potassium is soils.

Flame photometers are available in two versions:

Standard: single channel ready to measure potassium, sodium or calcium.


Dual channel: to measure sodium & potassium simultaneously

Sherwood photometer mod 410

Most of methods are EPA, SM, ISO, **APAT** compliant

Colorimetric & Fluorimetric detector

Fluorimetric methods can be used as alternative to the standard colorimetry thanks to the integrated high sensitivity fluorimeter . Available applications are:

Ammonia, Phosphate, Nitrite & Nitrite + Nitrate in seawater as well as Beta Glucan in beers.